Nuclear Medicine Technology
Medicine is not just using chemicals or other substance from plant, medicine also using many tools such as needle such as on acupuncture and may use electric device. Other new development and technology inovation on medicine technology is using nuclear as the substance to detect or to cure the diseases.
Two-thirds of nuclear medicine technologists worked in hospitals. Nuclear medicine technology programs range in length from 1 to 4 years and lead to a certificate, an associate degree, or a bachelor’s degree. Faster-than-average job growth will arise from an increase in the number of middle-aged and elderly persons, who are the primary users of diagnostic and treatment procedures.
Nuclear medicine technologists operate cameras that detect and map the radioactive drug in a patient’s body to create diagnostic images. After explaining test procedures to patients, technologists prepare a dosage of the radiopharmaceutical and administer it by mouth, injection, inhalation, or other means. They position patients and start a gamma scintillation camera, or “scanner,” which creates images of the distribution of a radiopharmaceutical as it localizes in, and emits signals from, the patient’s body. The images are produced on a computer screen or on film for a physician to interpret.
When preparing radiopharmaceuticals, technologists adhere to safety standards that keep the radiation exposure as low as possible to workers and patients. Technologists keep patient records and document the amount and type of radionuclides that they receive, use, and discard.
Although the potential for radiation exposure exists in this field, it is minimized by the use of shielded syringes, gloves, and other protective devices and by adherence to strict radiation safety guidelines. The amount of radiation in a nuclear medicine procedure is comparable to that received during a diagnostic x-ray procedure. Technologists also wear badges that measure radiation levels. Because of safety programs, badge measurements rarely exceed established safety levels.
Nuclear medicine technologists generally work a 40-hour week, perhaps including evening or weekend hours, in departments that operate on an extended schedule. Opportunities for part-time and shift work also are available. In addition, technologists in hospitals may have on-call duty on a rotational basis, and those employed by mobile imaging services may be required to travel to several locations.
Two-thirds of nuclear medicine technologists worked in hospitals. Nuclear medicine technology programs range in length from 1 to 4 years and lead to a certificate, an associate degree, or a bachelor’s degree. Faster-than-average job growth will arise from an increase in the number of middle-aged and elderly persons, who are the primary users of diagnostic and treatment procedures.
Nuclear medicine technologists operate cameras that detect and map the radioactive drug in a patient’s body to create diagnostic images. After explaining test procedures to patients, technologists prepare a dosage of the radiopharmaceutical and administer it by mouth, injection, inhalation, or other means. They position patients and start a gamma scintillation camera, or “scanner,” which creates images of the distribution of a radiopharmaceutical as it localizes in, and emits signals from, the patient’s body. The images are produced on a computer screen or on film for a physician to interpret.
When preparing radiopharmaceuticals, technologists adhere to safety standards that keep the radiation exposure as low as possible to workers and patients. Technologists keep patient records and document the amount and type of radionuclides that they receive, use, and discard.
Although the potential for radiation exposure exists in this field, it is minimized by the use of shielded syringes, gloves, and other protective devices and by adherence to strict radiation safety guidelines. The amount of radiation in a nuclear medicine procedure is comparable to that received during a diagnostic x-ray procedure. Technologists also wear badges that measure radiation levels. Because of safety programs, badge measurements rarely exceed established safety levels.
Nuclear medicine technologists generally work a 40-hour week, perhaps including evening or weekend hours, in departments that operate on an extended schedule. Opportunities for part-time and shift work also are available. In addition, technologists in hospitals may have on-call duty on a rotational basis, and those employed by mobile imaging services may be required to travel to several locations.
Labels: technology
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home